
SAND REPORT
SAND2002-3790
Unlimited Release
Printed November 2002

Xyce TM Parallel Electronic
Simulator

Users’ Guide, Version 2.0

Scott A. Hutchinson, Eric R. Keiter, Robert J. Hoekstra, Lon J. Waters, Thomas V.
Russo, Eric L. Rankin, Roger P. Pawlowski and Steven D. Wix

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

D
EP

ARTMENT OF ENERG
Y

• •U
N

ITED

STATES OF AM

ER
IC

A

SAND2002-3790
Unlimited Release

Printed November 2002

Xyce TM Parallel Electronic Simulator

Users’ Guide, Version 2.0

Scott A. Hutchinson, Eric R. Keiter, Robert J. Hoekstra, Eric L. Rankin, Roger P. Pawlowski
Computational Sciences

Lon J. Waters, Thomas V. Russo and Steven D. Wix
Component Information and Models

January 9, 2004

Abstract

This manual describes the use of the Xyce Parallel Electronic Simulator code for
simulating electrical circuits at a variety of abstraction levels. The Xyce Parallel Elec-
tronic Simulator has been written to support the simulation needs of the Sandia Na-
tional Laboratories electrical designers in a rigorous manner. As such, the develop-
ment has focused on improving the capability over the current state-of-the-art in the
following areas:

� Capability to solve extremely large circuit problems by supporting large-scale par-
allel computing platforms (up to thousands of processors). Note that this includes
support for most popular parallel and serial computers.

� Improved performance for all numerical kernels (e.g., time integrator, nonlinear
and linear solvers) through state-of-the-art algorithms and novel techniques.

� A client-server or multi-tiered operating model wherein the numerical kernel can
operate independently of the graphical user interface (GUI).

� Object-oriented code design and implementation using modern coding practices
that ensure that the Xyce Parallel Electronic Simulator will be maintainable and
extensible far into the future.

The code is a parallel code in the most general sense of the phrase - a message
passing parallel implementation - which allows it to run efficiently on the widest possible

3

Xyce TM
Users’ Guide

number of computing platforms. These include serial, shared-memory and distributed-
memory parallel as well as heterogeneous platforms. Furthermore, careful attention
has been paid to the specific nature of circuit-simulation problems to ensure that opti-
mal parallel efficiency is achieved even as the number of processors grows.

Another feature required by designers is the ability to add device models, many
specific to the needs of Sandia, to the code. To this end, the device package in the
Xyce Parallel Electronic Simulator is designed to support a variety of device model
inputs. These input formats include standard analytical models, behavioral models
and look-up tables. Combined with this flexible interface is an architectural design that
greatly simplifies the addition of circuit models.

One of the most important contribution Xyce makes to the designers at Sandia Na-
tional Laboratories is in providing a platform for computational research and develop-
ment aimed specifically at the needs of the Laboratory. With Xyce , Sandia now has an
“in-house” capability with which both new electrical (e.g., device model development)
and algorithmic (e.g., faster time-integration methods) research and development can
be performed. Furthermore, these capabilities will then be migrated to the end users.

4

Xyce TM
Users’ Guide

Acknowledgements

The authors would like to acknowledge the entire Sandia National Laboratories HPEMS
(High Performance Electrical Modeling and Simulation) team, including Carolyn Bogdan,
Regina Schells, Ken Marx, Steve Brandon, David Shirley and Bill Ballard, for their sup-
port on this project. We also appreciate very much the work of Becky Arnold and Mike
Williamson for the help in reviewing this document.

Lastly, a very special thanks to Hue Lai for his help in typesetting this document in LATEX.

Trademarks

The information herein is subject to change without notice.

Copyright c© 2002-2003 Sandia Corporation. All rights reserved.

Xyce TM
Electronic Simulator and Xyce TM

trademarks of Sandia Corporation.

Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence Design
Systems, Inc.

Silicon Graphics, the Silicon Graphics logo and IRIX are registered trademarks of Silicon
Graphics, Inc.

Microsoft, Windows and Windows 2000 are registered trademark of Microsoft Corporation.

Solaris and UltraSPARC are registered trademarks of Sun Microsystems Corporation.

hp and Alpha are registered trademarks of Hewlett-Packard company.

Amtec and TecPlot are trademarks of Amtec Engineering, Inc.

Xyce ’s expression library is based on that inside Spice 3F5 developed by the EECS De-
partment at the University of California.

All other trademarks are property of their respective owners.

Contacts

Bug Reports http://tvrusso.sandia.gov/bugzilla
Email xyce-support@sandia.gov
World Wide Web http://www.cs.sandia.gov/Xyce

5

Xyce TM
Users’ Guide

6

Contents

1. Preliminaries 15
1.1 Xyce Overview. 16
1.2 Installation . 17
1.3 Quick Reference for Users of Other Circuit Codes . 18
1.4 How to Use this Guide . 18

2. Distinctive Features of Xyce 21
2.1 Xyce Capabilities . 22
2.2 Support for large-scale parallel computing . 22
2.3 Analysis Support within Xyce . 23

3. Simulation Examples with Xyce 25
3.1 Example Circuit Construction . 26
3.2 Running Xyce . 29

Command Line Operation . 29
3.3 DC Sweep Analysis . 29
3.4 Transient Analysis . 30

4. Simulation Design Creation 35
4.1 Netlist Circuit Description. 36

Netlist Overview . 36
Netlist Elements . 36

4.2 Devices Available for Simulation . 38
Analog Devices . 39

4.3 Parameters and Expressions . 40
Parameters . 40
How to Declare and Use Parameters . 40
Expressions . 41

5. Working with Models 45
5.1 Definition of a Model . 46

Defining models using model parameters . 46
Defining models using subcircuit netlists . 46

5.2 Model Organization . 48
Model libraries . 48
Model library configuration . 49

Xyce TM
Users’ Guide CONTENTS

5.3 Analog Behavioral Modeling . 49
Overview of Analog Behavioral Modeling . 49
Specifying ABM Devices . 50

6. Creating and Running Analysis 51
6.1 Types of Analysis . 52
6.2 Analysis Creation . 52
6.3 Running a Xyce Simulation. 53

Command Line Simulation . 53

7. DC Analysis 57
7.1 Overview of DC Sweep. 58
7.2 Setting Up and Running a DC Sweep. 58
7.3 OP Analysis . 58

8. Transient Analysis 61
8.1 Transient Analysis Overview. 62
8.2 Defining a Time-Dependent (transient) Source. 62

Overview of Source Elements . 62
Defining Transient Sources . 62

8.3 Transient Calculation Time Steps . 63
8.4 Checkpointing and Restarting . 64

Checkpointing Command Format . 64
Restarting Command Format . 64

9. STEP Parametric Analysis 67
9.1 STEP Parametric Analysis Overview . 68
9.2 Sweeping over a Device Instance Parameter . 68
9.3 Sweeping over a Device Model Parameter . 69
9.4 Sweeping over Temperature . 69
9.5 Special cases: Sweeping Independent Sources, Resistors, Capacitors. 72

10.Using Homotopy Algorithms to Obtain Operating Points 73
10.1 Homotopy Algorithms Overview . 74

HOMOTOPY Algorithms Available in Xyce . 74
10.2 Examples . 74

MOSFET Homotopy . 74
Natural Parameter Homotopy . 76

11.Results Output and Evaluation Options 79
11.1 Control of Results Output. 80

.PRINT Command . 80
11.2 Additional Output Options . 80

.OPTIONS OUTPUT Command . 80
11.3 Evaluating Solution Results . 82

12.Running in Parallel 83

8

CONTENTS Xyce TM
Users’ Guide

12.1 Simple Parallel Execution Example . 84
12.2 Running Xyce in Parallel . 84

Running Xyce under MPICH . 84
Running Xyce under LAM MPI . 85

12.3 Partitioning Options . 85
Chaco Static Partitioning of Circuit . 85
Zoltan Partitioning of Linear System . 86
Recommended Partitioning and Solver Options . 86

9

Xyce TM
Users’ Guide CONTENTS

10

Figures

3.1 Schematic of diode clipper circuit with DC and transient voltage sources. . . . 27
3.2 Diode clipper circuit netlist. 28
3.4 DC sweep voltages at Vin, node 2 and Vout. 30
3.3 Diode clipper circuit netlist for DC sweep analysis. 31
3.6 Sinusoidal input signal and clipped outputs. 32
3.5 Diode clipper circuit netlist for transient analysis. 33

5.1 Example subcircuit model. 47
5.2 Example subcircuit model. 48

6.2 Platform scripts for running Xyce . 54
6.1 Example netlist editing using XEmacs. 55

7.1 Diode clipper circuit netlist for DC sweep analysis. 59
7.2 DC sweep voltages at Vin, node 2 and Vout. 60

9.1 Diode clipper circuit netlist for step transient analysis. 70
9.2 Diode clipper circuit netlist for 2-step transient analysis. 71

10.1 Example MOSFET homotopy netlist. 75
10.2 Example natural parameter homotopy netlist. 77

11.1 TecPlot plot of diode clipper circuit transient response from Xyce .prn file. . . 82

Xyce TM
Users’ Guide FIGURES

12

Tables

1.1 Xyce typographical conventions. 19

2.1 DC Analysis Capabilities. 24
2.2 Transient Analysis Capabilities. 24

3.1 DC Analysis References . 30
3.2 Transient Analysis References. 34

4.1 Analog Devices References. 38
4.2 Analog Device Quick Reference. 40
4.3 Expression operators . 43
4.4 Functions in arithmetic expressions . 44

8.1 Summary of time-dependent sources supported by Xyce 63

9.1 Default parameters for independent sources. 72

11.1 .PRINT command options. 81

Xyce TM
Users’ Guide TABLES

14

1. Preliminaries

Welcome to Xyce
The Xyce Parallel Electronic Simulator has been written to support, in a rigorous manner,
the simulation needs of the Sandia National Laboratories electrical designers. It is targeted
specifically to run on large-scale parallel computing platforms but also runs well on a variety
of architectures including single processor workstations. It also aims to support a variety
of devices and models specific to Sandia needs.

Xyce TM
Users’ Guide Preliminaries

1.1 Xyce Overview
The Xyce Parallel Electronic Simulator development has focused on improving the capa-
bility over the current state-of-the-art in the following areas:

� Capability to solve extremely large circuit problems by supporting large-scale parallel
computing platforms (up to thousands of processors). Note that this includes support
for most popular parallel and serial computers.

� Improved performance for all numerical kernels (e.g., time integrator, nonlinear and
linear solvers) through state-of-the-art algorithms and novel techniques.

� Support for modeling circuit phenomena at a variety of abstraction levels (device,
analog, digital and mixed-signal) in a rigorous and tightly coupled manner, allowing
for timely, full-system solutions.

� A client-server or multi-tiered operating model wherein the numerical kernel can op-
erate distinctly from the simulation interface and the graphical user interface (GUI)
(under development). This includes support for coupling with other simulation codes
which may provide, for example, environmental information pertinent to the circuit
(e.g, temperature as a function of time and space).

� Object-oriented code design and implementation using modern coding-practices that
ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible
far into the future.

The code is a parallel code in the most general sense of the phrase - a message passing
parallel implementation - which allows it to run efficiently on the widest possible number
of computing platforms. These include serial, shared-memory and distributed-memory
parallel as well as heterogeneous platforms. Furthermore, careful attention has been paid
to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency
is achieved even as the number of processors grows.

As mentioned above, the Xyce Parallel Electronic Simulator is being developed in support
of electrical designers of Sandia National Laboratory and, as such, is implementing sev-
eral novel features that will make their job considerably easier. In addition to allowing the
simulation of circuits of unprecedented size, Xyce includes novel approaches to numerical
kernels such as time-stepping algorithms, nonlinear and linear solvers and improved de-
vice models. This approach aims to minimize the amount of simulation “tuning” required
on the part of the designer and facilitate the code’s successful usage.

Another feature of Xyce is the ability to add device models, many specific to the needs
of Sandia, to the code. To this end, the device package in the Xyce Parallel Electronic
Simulator is designed to support a variety of device model inputs. These input formats
include standard analytical models, behavioral models and look-up tables, and support for

16

1.2 Installation Xyce TM
Users’ Guide

conductance values extracted from device-scale PDE models. Combined with this flexible
interface is an architectural design that greatly simplifies the addition of circuit models.

For the user, this document contains a description of the Xyce Parallel Electronic Simulator,
in which the following topics are specifically addressed. Chapters 2 and 3 give a simulation
overview illustrating the distinctive features of Xyce and some examples of using the code.
Chapters 4 through 5 describe how to create a basic circuit simulation design for Xyce us-
ing the standard netlist approach. Chapters 6 through 10 cover the creation and execution
of circuit problems for Xyce on the supported platforms, including both serial and parallel
architectures. This is followed by Chapter 11 that covers analyzing the results output by
the code.

A companion document, the Xyce Reference Guide [1], contains more detailed information
about a number of topics. Included in this document is a netlist reference for the input-
file commands and elements supported within Xyce ; a command line reference, which
describes the available command line arguements for Xyce ; and quick-references for users
of other circuit codes, such as Orcad’s PSpice [2] and Sandia’s ChileSPICE.

1.2 Installation

To obtain a copy of Xyce , contact the Xyce development team at http://www.cs.sandia.gov/Xyce.
Once you have the distribution file, install Xyce from the command line by following the in-
structions below. Examples are given for reference.

Instructions Examples

Installation packages are named
according the target operating system and
architecture (parallel or serial).

Install_Xyce_linux.tar.gz (Linux
Serial)
Install_Xyce_linux_MPI.tar.gz (Linux
Parallel)
Install_Xyce_windows.zip (Windows)

Unpack the appropriate package for your
platform. A similarly named installation
directory is then created. Windows users
can unpack with programs such as
WinZip, PKZip, Winrar, etc.

$ gzip -d Install_Xyce_linux.tar.gz
$ tar xf Install_Xyce_linux.tar

Enter this directory and run the
installation shell script. Windows users
should run the install.bat batch file.

$ cd Install_Xyce_linux
$ sh install_linux.sh

Provide the requested information.
Where should Xyce be installed?
/usr/local/Xyce-2.0

17

Xyce TM
Users’ Guide Preliminaries

Completing the steps above will unpack Xyce to the specified directory. IMPORTANT
NOTE: if installing both serial and parallel versions of Xyce, you must specify differ-
ent directories for each installation location. Failure to use different directories will
cause the second installation to overwrite parts of the first and will likely yield an
install that does not function. Under the specified installation directories, the following
subdirectories will be created:

� bin contains the executable used to start Xyce . The executable name will vary de-
pending on the target operating system and architecture.

– runxyce is the shell script for starting serial Xyce on Unix platforms.

– runxyce.bat is the batch file for starting serial Xyce on Windows.

– xmpirun is the wrapper script for mpirun used for running Xyce in parallel mode.

� doc contains the Xyce Users’ Guide, comprehensive Reference Guide, and Release
Notes. Read these for more information about this release and for detailed instruc-
tions on how to use Xyce .

� lib contains configuration files, libraries, and metadata for Xyce .

� test contains sample netlists and verification tools.

1.3 Quick Reference for Users of Other
Circuit Codes

Xyce is targeted at Sandia’s designer community, many of whom have experience using
other circuit codes, such as Orcad PSpice and Sandia’s ChileSPICE. Much of the use of
Xyce mirrors closely that in other circuit codes, but there are occasional differences that
are documented in the appendices. Users of PSpice and ChileSPICE can get a “quick-
start” by looking at the Xyce Reference Guide. [1].

1.4 How to Use this Guide

This guide is designed so you can quickly find the information you need to use Xyce . It
assumes that you are familiar with basic Unix-type commands, how Unix manages applica-
tions and files to perform routine tasks (e.g., starting applications, opening files and saving
your work).

18

1.4 How to Use this Guide Xyce TM
Users’ Guide

Typographical conventions

Before continuing in this Users’ Guide, it is important to understand the terms and typo-
graphical conventions used. Procedures for performing an operation are generally num-
bered with the following typographical conventions.

Notation Example Description

Verbatim text mpirun -np 2 Xyce

Commands entered from
the keyboard on the
command line or text
entered in a netlist.

Bold Roman Font
Set nominal temperature
using the TNOM option.

SPICE-type parameters
used in models, etc.

Gray Shaded Text DEBUGLEVEL
Feature that is designed
primarily for use by Xyce
developers.

[text in brackets] Xyce [options] <netlist> Optional parameters.

<text in angle brackets> Xyce [options] <netlist>
Parameters to be inserted
by the user.

<object with asterisk>* K1 <ind. 1> [<ind. n>*]
Parameter that may be
multiply specified.

<TEXT1|TEXT2>
.PRINT TRAN
+ DELIMITER=<TAB|COMMA>

Parameters that may only
take specified values.

Table 1.1. Xyce typographical conventions.

19

Xyce TM
Users’ Guide Preliminaries

20

2. Distinctive Features of
Xyce

Chapter Overview
This chapter outlines the disctinctive features of Xyce that provide the user with leading
edge capability in a variety of circuit simulation areas.

� Section 2.1, Xyce Capabilities

� Section 2.2, Support for large-scale parallel computing

� Section 2.3, Analysis Support within Xyce

Xyce TM
Users’ Guide Distinctive Features of Xyce

2.1 Xyce Capabilities
The Xyce Parallel Electronic Simulator is a program that models circuit behavior at a va-
riety of levels of fidelity - from Partial Differential Equations (PDE) based device models
to analog to mixed signal and digital simulation. When used with the simulation front-end,
Xyce will serve as an electronic laboratory for circuit design and optimization before any
hardware is ever implemented. There are many tools available for basic circuit design.
What sets Xyce apart are several key improvements over the state-of-the-art in circuit
simulation as described in this chapter.

2.2 Support for large-scale parallel
computing

Xyce is a truly parallel simulation code, designed and written from the ground up to support
large-scale (up to thousands of processors) parallel computing architectures. This gives
Xyce the capability to solve circuit problems of unprecedented size in time frames that
make these simulations practical.

Xyce is a parallel code that uses a message passing parallel implementation, which allows
it to run efficiently on the widest possible number of computing platforms. These include se-
rial, shared-memory and distributed-memory parallel as well as heterogeneous platforms.
Furthermore, careful attention has been paid to the specific nature of circuit-simulation
problems to ensure that optimal parallel efficiency is achieved even as the number of pro-
cessors grows (parallel scaling).

Improved performance for all numerical kernels

In writing Xyce from scratch, new algorithms and heuristics have been used which improve
the overall performance of the numerical kernels for a given level of accuracy. As an
example, several new nonlinear solution options are available which, when coupled with
iterative linear solvers, can reduce execution time for many problems.

Ease of device model addition

Another feature of Xyce is the ability to add device models, many specific to the needs of
Sandia, to the code. To this end, the device package1 in Xyce has been designed with
a flexible device-model interface that greatly simplifies the addition of circuit models. The
device package interface has support for the standard “analog” or SPICE-type models as
well as look-up tables, behavioral models and even PDE-based device models.

1The term “package” is a Unified Modeling Language (UML) term which refers to a group of classes,
something akin to a module and is largely used in object-oriented programming.

22

2.3 Analysis Support within Xyce Xyce TM
Users’ Guide

Problem-specific modeling fidelity

Xyce has been designed to support the needs of Sandia National Laboratories’ electrical
designers who often need to model circuit phenomena at varying levels of fidelity - even
within a given simulation. Thus, the code has been designed with an infrastructure that
supports coupled simulation at several distinct abstraction levels: device, analog, digital
and mixed-signal. While the code currently only supports analog simulation, development
is proceeding to support both the device-scale2 and digital/mixed-signal modeling. This is
done in a rigorous and tightly coupled manner, allowing for timely, full-system solutions.

Analysis capability

Xyce currently supports DC and transient as well as a variety of optimization and design
options available from the DAKOTA optimization framework [3] . This document does not
cover the coupling of Xyce with DAKOTA. Sandia customers may contact the Xyce team
for assistance with this “developing” capability. Full support is expected in the next major
release.

Object-oriented code design and implementation

Xyce was designed and written from the ground up utilizing modern coding practices to
ensure the optimal combination of code performance, code maintenance and code exten-
sibility. This design allows for rapid implementation of new capability as well as long term
maintenance of the code.

2.3 Analysis Support within Xyce
Several simulation analysis options are supported within Xyce . For basic analysis, Xyce
currently supports DC and transient analysis; AC analysis intended to be supported in a
future release. Also, a variety of optimization and design options are available via coupling
with the DAKOTA optimization framework [3]. While DAKOTA is not distributed as part of
Xyce , Sandia customers may contact the Xyce team for assistance with this capability.

DC Analysis

DC analysis is used to evaluate the circuit response to a direct current input source. DC
analysis is automatically performed prior to a transient analysis simulation in order to pro-
vide initial conditions. This is commonly referred to as the “DC Operating Point” calcula-
tion. In addition, DC analysis can be performed to provide additional information about
the circuit. Table 2.1 summarizes the various DC analysis types and corresponding Xyce
implementation.

2The work on the device-scale coupling has been demonstrated but is not supported in the current release.
It is expected to be made generally available by the next major release.

23

Xyce TM
Users’ Guide Distinctive Features of Xyce

DC Analysis Type. . . Xyce Calculates. . .

DC sweep
Steady-state voltages and currents when
sweeping a source, a model parameter, or
temperature over a range of values.

Operating Point
Steady-state initial conditions for voltages
and currents at a DC bias.

Table 2.1. DC Analysis Capabilities.

Transient Calculations

The transient analysis capability within Xyce computes the transient performance of a
circuit for a specified time interval. The initial conditions are provided by a DC analysis (DC
Operating Point) automatically performed at the beginning of the transient simulation.

Transient Analysis Type. . . Xyce Calculates. . .

Transient Voltages and current tracked over time.

Table 2.2. Transient Analysis Capabilities.

Optimization and Design

The DAKOTA framework [3] provides a suite of optimization and design tools that can be
used in conjunction with Xyce . For more information, contact a member of the Xyce team
(see the Contact information on page 5.)

24

3. Simulation Examples
with Xyce

Chapter Overview
This chapter provides an introduction to the process and tools used to generate and run
circuit design simulations and to evaluate the results. An example circuit is provided for
each available analysis type.

� Section 3.1, Example Circuit Construction

� Section 3.2, Running Xyce

� Section 3.3, DC Sweep Analysis

� Section 3.4, Transient Analysis

Xyce TM
Users’ Guide Simulation Examples with Xyce

3.1 Example Circuit Construction
This section describes how to use Xyce to create the simple diode clipper circuit shown in
Figure 3.1.

While a schematic edit and capture capability is under development, Xyce currently only
supports circuit creation via netlist editing. Xyce supports most of the standard netlist
entries common to Berkeley SPICE 3F5 and Orcad PSpice. For users who are familiar
with PSpice netlists, the differences between PSpice and Xyce netlists are listed in the
Xyce Reference Guide [1].

Example: diode clipper circuit

1. Open a new netlist file using a standard text editor (e.g., VI, Emacs, notepad, etc.).

2. Type the title on the first line of the netlist:

Diode Clipper Circuit

3. Create a 5V DC voltage source between nodes 1 and 0 by typing the following on a
new line:

VCC 1 0 5V

4. Create another DC voltage source between nodes 3 and 0 by entering the following
on a new line:

VIN 3 0 0V

5. Place the diodes in the circuit between nodes 2 and 1, and nodes 0 and 2, respec-
tively, by entering the following lines:

D1 2 1 D1N3940
D2 0 2 D1N3940

6. Enter resistors R1, R2, R3 and R4, respectively:

R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K

7. Place the capacitor in the circuit:

26

3.1 Example Circuit Construction Xyce TM
Users’ Guide

C1 2 4 0.47u

8. Add the diode model to the netlist to complete it as Figure 3.2.

9. Complete the netlist by entering .END on the last line in the file. Save the file as
clipper.cir. The complete netlist is shown in Figure 3.2 and the schematic in
Figure 3.1.

The netlist in Figure 3.2 illustrates some of the syntax of a netlist input file. Netlists begin
with a title (e.g., “Diode Clipper Circuit”), support comments (lines beginning with the
“*” character), devices, model definitions and the “.END” statement.

This netlist file is not yet complete and will not run properly using Xyce (see Section 3.2
for instructions on running Xyce) as it lacks an analysis statement. As you proceed in this
chapter, you will see how to add the appropriate analysis statement and run the clipper
circuit.

Figure 3.1. Schematic of diode clipper circuit with DC and tran-
sient voltage sources.

27

Xyce TM
Users’ Guide Simulation Examples with Xyce

Diode Clipper Circuit
*
* Voltage Sources
VCC 1 0 5V
VIN 3 0 0V
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
*
* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE
* SUBTYPE: RECTIFIER
.MODEL D1N3940 D(
+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ VJ = .4
+ M = .38
+ EG = 1.36
+ XTI = -8
+ KF = 0
+ AF = 1
+ FC = .9
+ BV = 600
+ IBV = 1E-4)
*
.END

Figure 3.2. Diode clipper circuit netlist.

28

3.2 Running Xyce Xyce TM
Users’ Guide

3.2 Running Xyce
While a GUI for Xyce is under development, Xyce is currently run from the command line.
This section provides an overview of how to run Xyce .

Command Line Operation

Running Xyce from the command line is straightforward. The scripts xmpirun and runxyce
created during Installation (1.2) set up the runtime environment for you and execute Xyce .
Depending on whether you are using a version compiled with MPI or a serial version, there
are two simple ways to begin running Xyce :

� Running serial Xyce :

> runxyce [options] <netlist filename>

� Running Xyce in parallel:

> xmpirun -np <# procs> [options] <netlist filename>

While Xyce is running, the progress of the simulation is output to the command line window.

For a more complete description of running Xyce in serial and in parallel, see Section 6.3.

3.3 DC Sweep Analysis
This section illustrates how to run a DC sweep analysis using Xyce . In this example we
examine the DC response of the clipper circuit by running a DC sweep of the input voltage
source (Vin) and reviewing at the results generated by Xyce . This example demonstrates
using DC sweep analysis parameters that vary Vin from -10 to 15 volts in 1 volt steps.

Example: DC sweep analysis

To set up and run a DC sweep analysis using the diode clipper circuit:

1. Open the diode clipper circuit netlist file (clipper.cir) using a standard text editor
(e.g., VI, Emacs, notepad, etc.).

2. Enter the analysis control statement in the netlist:

.DC VIN -10 15 1

3. Enter the output control statement:

29

Xyce TM
Users’ Guide Simulation Examples with Xyce

.PRINT DC V(3) V(2) V(4)

4. Save the netlist file and run Xyce on the circuit. For example, to run serial Xyce :

> runxyce clipper.cir

5. Open the results file (clipper.cir.prn) and examine (or plot) the output voltages that
were selected for nodes 3 (Vin), 2 and 4 (Out). Figure 3.4 shows the output plotted
as a function of the swept variable Vin.

The modified netlist is shown below in Figure 3.3.

Figure 3.4. DC sweep voltages at Vin, node 2 and Vout.

Table 3.1 gives references for further explanation of the supported DC sweep analysis.

To find out more about. . . See. . .

DC analysis for analog designs Chapter 7, DC Analysis

Table 3.1. DC Analysis References

3.4 Transient Analysis
This section shows how to run a transient analysis using Xyce . In this example, we look
at the transient response of the clipper circuit to a sinusoidal input voltage source (Vin)

30

3.4 Transient Analysis Xyce TM
Users’ Guide

Diode Clipper Circuit with DC sweep analysis statement
*
* Voltage Sources
VCC 1 0 5V
VIN 3 0 0V
* Analysis Command
.DC VIN -10 15 1
* Output
.PRINT DC V(3) V(2) V(4)
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
*
* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE
* SUBTYPE: RECTIFIER
.MODEL D1N3940 D(
+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ VJ = .4
+ M = .38
+ EG = 1.36
+ XTI = -8
+ KF = 0
+ AF = 1
+ FC = .9
+ BV = 600
+ IBV = 1E-4)
*
.END

Figure 3.3. Diode clipper circuit netlist for DC sweep analysis.

31

Xyce TM
Users’ Guide Simulation Examples with Xyce

and review the results generated by Xyce . This example utilizes a sinusoidal input voltage
source running at a frequency of 1 kHz and amplitude of 10 volts. To set up this example,
we must modify the netlist to include this source.

Example: transient analysis

To set up and run a transient analysis using the diode clipper circuit:

1. Open the diode clipper circuit netlist file file (clipper.cir) using a standard text editor
(e.g., VI, Emacs, notepad, etc.).

2. If you added DC analysis statements in the previous example, remove them (see
Figure 3.4).

3. Enter the analysis control in the netlist:

.TRAN 2ns 2ms

4. Modify the input voltage source (Vin) to generate the sinusoidal input signal:

VIN 3 0 SIN(10V 1kHz)

5. Save the netlist file and run Xyce on the circuit. For example, to run serial Xyce :

> runxyce clipper.cir

6. Open the results file and examine (or plot) the output voltages for nodes 3 (Vin), 2
and 4 (Out). The plot in Figure 3.6 shows the output plotted as a function of time.

The modified netlist is shown in Figure 3.5.

Figure 3.6. Sinusoidal input signal and clipped outputs.

32

3.4 Transient Analysis Xyce TM
Users’ Guide

Diode Clipper Circuit with transient analysis statement
*
* Voltage Sources
VCC 1 0 5V
VIN 3 0 SIN(0V 10V 1kHz)
* Analysis Command
.TRAN 2ns 2ms
* Output
.PRINT TRAN V(3) V(2) V(4)
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
*
* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE
* SUBTYPE: RECTIFIER
.MODEL D1N3940 D(
+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ VJ = .4
+ M = .38
+ EG = 1.36
+ XTI = -8
+ KF = 0
+ AF = 1
+ FC = .9
+ BV = 600
+ IBV = 1E-4)
*
.END

Figure 3.5. Diode clipper circuit netlist for transient analysis.

33

Xyce TM
Users’ Guide Simulation Examples with Xyce

Table 3.2 below gives references for further explanation of the supported transient analysis.

To find out more about. . . See. . .

Transient analysis for analog designs Chapter 8, Transient Analysis

Table 3.2. Transient Analysis References.

34

4. Simulation Design
Creation

Chapter Overview
This chapter contains basic information on creating circuit designs. Sections include:

� Section 4.1 Netlist Circuit Description

� Section 4.2 Devices Available for Simulation

� Section 4.3 Parameters and Expressions

Xyce TM
Users’ Guide Simulation Design Creation

4.1 Netlist Circuit Description

Netlist Overview

Using a netlist to describe a circuit for Xyce is the primary method used for running a circuit
simulation. Netlist support within Xyce largely conforms to that used by Berkeley SPICE
3F5 with several new options for controlling functionality unique to Xyce . In a netlist, the
circuit is described by a set of “element lines” which define the circuit elements and their
values, the circuit topology (the connection of the circuit elements), and a variety of control
options for the simulation. The first line in the netlist file must be a title and the last line
must be “.END”. Between these two constraints, the order of the statements is irrelevant.

Netlist Elements

An “element line”, for which the format is determined by the specific element type, defines
each circuit element instance. The general format is given by:

<type><name> <node information> <element information...>

The <type> must be a letter (A through Z) and the <name> follows immediately. For ex-
ample, RARESITOR specifies a type=resistor with a name ARESITOR. Fields on a line are
separated by spaces, commas, an equal sign or a left or right parenthesis.

A number field may be an integer or a floating-point value. Either one may be followed by
one of the following scaling factors:

Symbol Equivalent Value

T 1012

G 109

Meg 106

K 103

mil 25.4−6

m 10−3

u (µ) 10−6

n 10−9

p 10−12

f 10−15

36

4.1 Netlist Circuit Description Xyce TM
Users’ Guide

Node information is given in terms of node names, which are arbitrary character strings.
The only requirement is that the ground node is named ’0’. There are some restrictions on
the circuit topology:

� There can be no loop of voltage sources and/or inductors.

� There can be no cut-set of current sources and/or capacitors.

� Every node must have a DC path to ground.

� Every node must have at least two connections (with the exception of unterminated
transmission lines and MOSFET substrate nodes).

The following line provides an example of an element line that defines a resistor between
nodes 1 and 3 with a resistance value of 10 kΩ.

Example: RARESISTOR 1 3 10K

Title, Comments and End

The title line is required to be the first line in the input netlist and is included in the output
file.

Example: Test RLC Circuit

The “.End” line must be the last line in the netlist.

Example: .END

Comments are supported in netlists and are indicated by placing an asterisk at the be-
ginning of the comment line. They may occur anywhere in the netlist but they must be
at the beginning of a line. Xyce also supports “in-line” comments. An in-line comment is
designated by a semicolon and may occur on any line. Everything after the semicolon is
taken as a comment and ignored. Any line that begins with leading white space is also
considered to be a comment.

Example: * This is a netlist comment.

Example: .DC * This type of inline comment is not supported.

Example: .DC ; This type of inline comment is supported.

37

Xyce TM
Users’ Guide Simulation Design Creation

Netlist Commands

Command elements are used to describe the analysis being defined by the netlist. Exam-
ples include analysis types, initial conditions, device models and output control. The Xyce
Reference Guide [1] contains a refernce for these commands.

Example: .PRINT TRAN V(Vout)

Analog Devices

The analog devices supported include most of the standard circuit components normally
found in circuit simulators such as SPICE 3F5, PSpice, etc., plus several Sandia specific
devices.

Example: D CR303 N 0065 0 D159700

Table 4.1 below gives references for further explanation of the supported analog devices.

To find out more about. . . See. . .

Analog devices Xyce Reference Guide [1]

Table 4.1. Analog Devices References.

4.2 Devices Available for Simulation
This section describes the different types of analog devices supported in Xyce . These
include standard analog devices, sources (dependent and independent) and subcircuits.
Each device description has the following information:

� A description and an example of the netlist syntax

� The corresponding model types and descriptions, where applicable

� The corresponding lists of model parameters and descriptions, where applicable

� The associated circuit diagram and model equations (as necessary)

These analog devices include all of the standard circuit components needed for most ana-
log circuits. User defined models may also be implemented using the .MODEL (model defini-
tion) statement and macromodels as subcircuits using the .SUBCKT (subcircuit) statement.

38

4.2 Devices Available for Simulation Xyce TM
Users’ Guide

Analog Devices

Xyce supports many analog devices, including sources, subcircuits and behavioral mod-
els. The devices are classified into device types, each of which can have one or more
model types. For example, the BJT device type has two model types: NPN and PNP.

The device element statements in the netlist always start with the name of the individual
device instance. The first letter of the name determines the device type. The format of
the following information depends on the device type and its parameters. The Device Type
summary table (Table 4.2) lists all of the analog devices supported by Xyce . Each standard
device is then described in more detail in the following sections. Except where noted, the
devices are based upon those found in [4].

Table 4.2 is a summary of the analog device types and the form of their netlist formats. For
a more complete description of the syntax for supported devices, see the Xyce Reference
Guide. [1].

Device Type
Designator

Letter
Typical Netlist Format

Capacitor C
C<name> <+ node> <- node> [model name] <value>

+ [IC=<initial value>]

Inductor L
L<name> <+ node> <- node> [model name] <value>

+ [IC=<initial value>]

Resistor R
R<name> <+ node> <- node> [model name] <value>

+ [L=<length>] [W=<width>]

Diode D
D<name> <anode node> <cathode node>

+ <model name> [area value]

Mutual Inductor K
K<name> <inductor 1> [<ind. n>*]

+ <linear coupling or model>

Independent Voltage

Source
V

V<name> <+ node> <- node> [[DC] <value>]

+ [AC <magnitude value> [phase value]]
+ transient specification]

Independent Current

Source
I

I<name> <+ node> <- node> [[DC] <value>]

+ [AC <magnitude value> [phase value]]
+ [transient specification]

Voltage Controlled

Voltage Source
E

E<name> <+ node> <- node> <+ controlling node>

+ <- controlling node> <gain>
Voltage Controlled

Current Source
G

G<name> <+ node> <- node> <+ controlling node>

+ <- controlling node> <transconductance>
Nonlinear Dependent

Source (B Source)
B

B<name> <+ node> <- node>

+ <I or V>={<expression>}

Bipolar Junction

Transistor (BJT)
Q

Q<name> <collector node> <base node> <emitter

node> [substrate node] <model name> [area
value]

39

Xyce TM
Users’ Guide Simulation Design Creation

Device Type
Designator

Letter
Typical Netlist Format

MOSFET M
M<name> <drain node> <gate node> <source node>

+ <bulk/substrate node> <model name>
+ [common model parameter]*

Transmission Line T
T<name> <A port + node> <A port - node>

+ <B port + node> <B port - node>
+ <ideal specification>

Voltage Controlled

Switch
S

S<name> <+ switch node> <- switch node>

+ <+ controlling node> <- controlling node>
+ <model name>

Subcircuit X
X<name> [node]* <subcircuit name>

+ [PARAMS:[<name>=<value>]*]

PDE Devices Z
Z<name> <node1> <node2> [node3]

+ [node4] <model name>
Table 4.2: Analog Device Quick Reference.

4.3 Parameters and Expressions
In addition to explicit values, the user may use parameters and expressions to symbolize
numeric values in the circuit design.

Parameters

A parameter is like a programming variable that represents a numeric value by name. Once
you have defined a parameter (declared its name and given it a value) at a particular level
in the circuit hierarchy, you can use it to represent circuit values at that level or any level
directly beneath it in the circuit hierarchy. One way that you can use parameters is to apply
the same value to multiple part instances.

How to Declare and Use Parameters

In order to use a global parameter in a circuit, one must:

� define the parameter using a .PARAM statement within a netlist

� replace an explicit value with the parameter in the circuit

Note that Xyce reserves several keywords that may not be used as parameter names.
These are:

40

4.3 Parameters and Expressions Xyce TM
Users’ Guide

� Time

� Vt

� Temp

� GMIN

However, in this first release of Xyce , only Time is predefined.

Example: Declaring a parameter

1. Locate the level in the circuit hierarchy at which the .PARAM statement declaring a
parameter will be placed (note: a global parameter that can be used anywhere in the
netlist can be declared by placing the .PARAM statement at the top-most level of the
circuit).

2. Name the parameter and give it a value. The value can be numeric or given by an
expression:

.SUBCKT subckt1 n1 n2 n3

.PARAM res = 100
*
* other netlist statements here
*
.ENDS

3. Note: the parameter “res” can be used anywhere within the subcircuit subckt1 includ-
ing subcircuits defined within it, but cannot be used outside of subckt1.

Example: Using a parameter in the circuit

1. Find the numeric value that is to be replaced by a parameter: a device instance
parameter value, model parameter value, etc. The value being replaced must be
accessible with the current hierarchy level.

2. Replace the numeric value with the parameter name contained within braces ({}) as
in:

R1 1 2 {res}

Expressions

In Xyce , an expression is a mathematical relationship that may be used any place one
would use a number (numeric or boolean). Xyce evaluates the expression to a value when
it reads in a new circuit netlist.

41

Xyce TM
Users’ Guide Simulation Design Creation

To use an expression in a circuit netlist:

1. Locate the value to be replaced (component, model parameter, etc.).

2. Substitute the value with an expression utilizing the {} syntax:

{expression}

where expression can contain any of the following:

� available operators from those in Table 4.3

� included functions from those in Table 4.4

� user-defined functions

� the system variable TIME for use only in ABM expressions, see Chapter5.3

� user-defined parameters that are within scope

� literal operands

The braces ({}) instruct Xyce to evaluate the expression and use the resulting value.

Example: Using an expression

Scaling the DC voltage of a 12V independent voltage source, designated VF, by some
factor can be accomlished by the following netlist statements (in this example the factor is
1.5):

.PARAM FACTORV=1.5
VF 3 4 {FACTORV*12}

Xyce will evaluate the expression to:

12 * 1.5 or 18 volts

1Logical and relational operators are used only with the IF() function.

42

4.3 Parameters and Expressions Xyce TM
Users’ Guide

Class of
operator. . .

Operator. . . Meaning

arithmetic + addition or string concatenation

- subtraction

* multiplication

/ division

** exponentiation

logical1 ~ unary NOT

| boolean OR

^ boolean XOR

& boolean AND

relational == equality

!= non-equality

> greater-than

>= greater-than or equal

< less-than

<= less-than or equal

Table 4.3. Expression operators

43

Xyce TM
Users’ Guide Simulation Design Creation

Function. . . Meaning. . . Explanation. . .

ABS(x) |x|

SQRT(x)
√

x

MIN(x,y) min(x, y) minimum of x and y

MAX(x,y) max(x, y) maximum of x and y

EXP(x) ex

LN(x) ln(x) log base e

LOG(x) log(x) log base 10

SIN(x) sin(x) x in radians

ASIN(x) arcsin(x) result in radians

SINH(x) sinh(x) x in radians

ASINH(x) sinh−1(x) result in radians

COS(x) cos(x) x in radians

ACOS(x) arccos(x) result in radians

COSH(x) cosh(x) x in radians

ACOSH(x) cosh−1(x) result in radians

TAN(x) tan(x) x in radians

ATAN(x) arctan(x) result in radians

TANH(x) tanh(x) x in radians

ATANH(x) tanh−1(x) result in radians

ATAN2(x,y) arctan(y/x) result in radians

SGN(x) +1 if x > 0

0 if x = 0

-1 if x < 0

STP(x) 1 if x > 0 suppress a value until a given time

0 otherwise

URAMP(x) x if x > 0

0 otherwise

IF(t,x,y) x if t is true,
t is an expression using the relational
operators in Table 4.3

y otherwise

DDT(x) time derivative of x

SDT(x) time integral of x

Table 4.4. Functions in arithmetic expressions

44

5. Working with Models

Chapter Overview
This chapter contains model ideas and a summary of the ways to create and modify mod-
els. Sections include:

� Section 5.1, Definition of a Model

� Section 5.2, Model Organization

� Section 5.3, Analog Behavioral Modeling

Xyce TM
Users’ Guide Working with Models

5.1 Definition of a Model

A model describes the electrical performance of a part. A part is a component in the circuit
with specific simulation properties that define the part. In a netlist, a part is identified by its
implementation properties designated by the associated model name.

Depending on the given device type, a model is defined as either:

� a model parameter set

� a subcircuit netlist

Both methods of defining a model use a netlist format, with precise syntax rules as de-
scribed below.

Defining models using model parameters

Xyce currently has no built-in models. However, models can be defined for a device by
changing some or all of the model parameters from their defaults via the .MODEL syntax.
For example:

Example: .MODEL MLOAD1 NMOS (LEVEL=2 VTO=0.5 CJ=0.025pF)

Defining models using subcircuit netlists

In Xyce , models may also be defined using the subcircuit syntax: .SUBCKT/.ENDS. This
syntax includes:

� netlists to define the configuration and function of the part.

� variable input parameters to modify the model.

See Figure 5.1 for an example.

46

5.1 Definition of a Model Xyce TM
Users’ Guide

*** SUBCIRCUIT: l3dsc1
*** Parasitic Model: microstrip
*** Only one segment
.SUBCKT l3dsc1 1 3 2 4
C01 1 0 4.540e-12
RG01 1 0 7.816e+03
L1 1 5 3.718e-08
R1 5 2 4.300e-01
C1 2 0 4.540e-12
RG1 2 0 7.816e+03
C02 3 0 4.540e-12
RG02 3 0 7.816e+03
L2 3 6 3.668e-08
R2 6 4 4.184e-01
C2 4 0 4.540e-12
RG2 4 0 7.816e+03
CM012 1 3 5.288e-13
KM12 L1 L2 2.229e-01
CM12 2 4 5.288e-13
.ENDS

Figure 5.1. Example subcircuit model.

Subcircuit Hierarchy

Xyce supports the definition of subcircuits within other subcircuits. Each subcircuit defini-
tion introduces a new level in the circuit hierarchy with the top level begin the main circuit. If
a second level is defined, it is composed of the subcircuits in the main circuit and each sub-
sequent level is composed of the subcircuits contained in the previous level. A subcircuit
may also contain other definitions such as models via the .MODEL statement, parameters
via the .PARAM statement, and functions via the .FUNC statement.

In this context, the subcircuit defines the “scope” for the definitions it contains. That is,
the definitions contained within a subcircuit can be used within that subcircuit and/or within
any subcircuit it contains. Any definitions occuring in the main circuit have global scope
and can be used anywhere in the circuit. A name, such as a model, parameter, function or
subcircuit name, occurring in a definition at one level of a circuit hierarchy can be redefined
at any lower level contained directly by the subcircuit. In this case, the new definition
applies at the given level and those below.

In the following example, the model named MOD1 can be used in subcircuits SUB1 and SUB2

47

Xyce TM
Users’ Guide Working with Models

but not in the subcircuit SUB3. The parameter P1 has a value of 10 in subcircuit SUB1 and a
value of 20 in subcircuit SUB2.

.SUBCKT SUB1 1 2 3 4

.MODEL MOD1 NMOS(LEVEL=2)

.PARAM P1=10
*
* subcircuit devices omitted for brevity
*
.SUBCKT SUB2 1 3 2 4
.PARAM P1=20
*
* subcircuit devices omitted for brevity
*
.ENDS
.ENDS

.SUBCKT SUB3 1 2 3 4
*
* subcircuit devices omitted for brevity
*
.ENDS

Figure 5.2. Example subcircuit model.

5.2 Model Organization
The organization of models entails the following fundamental concepts:

� model definitions are saved in model library files.

� model libraries must be constructed so that Xyce will look to them for model defini-
tions.

Model libraries

Device model and subcircuit definitions are organized into model libraries. These libraries
are text files (similar to netlist files) that have one or more model definitions. Model library
names usually end with a .lib extension.

48

5.3 Analog Behavioral Modeling Xyce TM
Users’ Guide

As a rule-of-thumb, model libraries files typically include similar model types. In these files,
the header comments describe the models therein.

Model library configuration

Xyce searches the model library files for the model names given by the .MODEL statement
for parts in the netlist. It then uses these model definitions in the simulation. For Xyce to
be able to find these model definitions, the libraries must be “included” in the netlist. This
is accomplished by adding a .INCLUDE statement to the netlist. As an example:

*** SUBCIRCUIT: l3dsc1
*** Parasitic Model: microstrip
*** Only one segment
.SUBCKT l3dsc1 1 3 2 4
.INCLUDE "model.lib"
C01 1 0 4.540e-12
RG01 1 0 7.816e+03
L1 1 5 3.718e-08
R1 5 2 4.300e-01
C1 2 0 4.540e-12
RG1 2 0 7.816e+03
C02 3 0 4.540e-12
RG02 3 0 7.816e+03
L2 3 6 3.668e-08
R2 6 4 4.184e-01
C2 4 0 4.540e-12
RG2 4 0 7.816e+03
CM012 1 3 5.288e-13
KM12 L1 L2 2.229e-01
CM12 2 4 5.288e-13
.ENDS

The scoping rules for .INCLUDE statements is the same as for other types of definitions as
outlined in the preceding section.

5.3 Analog Behavioral Modeling

Overview of Analog Behavioral Modeling

The analog behavioral modeling capability of Xyce provides for flexible descriptions of
electronic components in terms of a transfer function or lookup table. In other words,

49

Xyce TM
Users’ Guide Working with Models

a mathematical relationship is used to model a circuit segment removing the need for
component by component design.

In Xyce , the B nonlinear dependent source device type is used for analog behavioral mod-
eling . The PSpice equivalent is its E and G voltage controlled source device types. Xyce
automatically converts some forms of the PSpice E and G devices to the equivalent B de-
vice as described in ”Quick Reference for PSpice Users” section of the Xyce Reference
Guide [1]. The manual conversion from a PSpice analog behavioral model is also be de-
scribed in the Xyce Reference Guide.

Specifying ABM Devices

ABM devices (B devices) are specified in a netlist the same way as other devices. Cus-
tomizing the operational behavior of the device is achieved by defining an ABM expression
describing how inputs are transformed into outputs.

Device and node names in ABM expressions

ABM expressions follow the same rules as other expressions in a netlist with the additional
ability to specify signals (node voltages and voltage source currents) in the expression. In
ABM expressions, refer to signals by name. Xyce recognizes the following constructs in
ABM expressions:

� V(<node name>)

� V(<node name>,<node name>)

� I(<voltage source name>)

In a hierarchical circuit (a circuit with possibly nested levels of subcircuits), voltage source
names that appear in an ABM expression must be the name of a voltage source in the
same subcircuit as the ABM device. Similarly, node names in an ABM expression must be
the node names of one or more devices in the same subcircuit as the ABM device.

50

6. Creating and Running
Analysis

Chapter Overview
This chapter outlines methods for creating and running different types of circuit analysis
using Xyce . This is given in the following sections:

� Section 6.1, Types of Analysis

� Section 6.2, Analysis Creation

� Section 6.3, Running a Xyce Simulation

� Section 12.3, Parallel Partitioning Options

Xyce TM
Users’ Guide Creating and Running Analysis

6.1 Types of Analysis
Currently Xyce supports only DC and transient analysis with plans to support AC analysis
and a variety of design analysis types (e.g. design optimization, sensitivity analysis) in the
future.

DC Analysis

DC analysis is used to evaluate the circuit response to a direct current input source. DC
analysis is automatically performed prior to a transient analysis simulation in order to pro-
vide initial conditions. In addition, DC analysis can be performed in a stand-alone manner
to provide additional information about the circuit. Currently, only the DC sweep analysis
is supported which calculates steady-state voltages and currents when sweeping a source
or a model parameter.

Transient Calculations

The transient analysis capability within Xyce computes the transient performance of a
circuit for a specified time interval. The initial conditions are provided by a DC analysis
automatically performed at the beginning of the transient simulation. From this, Xyce com-
putes the transient response from TIME=0 to a specified time. During this calculation, the
Xyce time integrating algorithms adjust the calculation’s time step size to correspond to
the circuit’s response while minimizing the overall number of time steps. This is accom-
plished by ensuring the default or user specified error requirements while maximizing the
time-step size at any point. During fast changing portions of the simulation, the time-step
size is reduced, while during less active portions, the step-size is increased.

6.2 Analysis Creation
To set up a simulation analysis:

1. Open a new or existing netlist text file using a text editor (e.g., XEmacs, VI, Notepad).
See Figure 6.1 for an example of editing a netlist using XEmacs.

2. Enter the netlist commands that describe the circuit, analysis type and output infor-
mation. See Chapter 3 for a description on how to setup a circuit design.

3. Enter the required parameter values and other information to complete the analysis
specifications.

4. Save the file for running in Xyce .

Specific information for setting up each type of analysis is discussed in the following chap-
ters.

52

6.3 Running a Xyce Simulation Xyce TM
Users’ Guide

6.3 Running a Xyce Simulation
While a GUI for Xyce is under development and will be part of an overall simulation frame-
work, Xyce is currently run from the command line. This section outlines how to run Xyce
for both serial and MPI parallel simulations.

Command Line Simulation

Running Xyce from the command line is straightforward. The scripts xmpirun and runxyce
created during installation (see Section 1.2) set up the runtime environment and execute
Xyce . (Microsoft Windows users should use the runxyce.bat batch file.) Depending on
whether you are using a version compiled with MPI support or a serial version, there are
two ways to begin running Xyce :

� Running serial Xyce :

> runxyce [options] <netlist filename>

� Running Xyce in parallel:

> xmpirun -np <# procs> [options] <netlist filename>

where [options] are the command line arguments for Xyce . For example, to log output to
a file named sample.log type:

$ runxyce -l sample.log <netlist filename>

The next example runs parallel Xyce on four processors and places the results into a
comma separated value file named results.csv:

$ xmpirun -np 4 -delim COMMA -o results.csv <netlist filename>

These examples assume that <netlist filename> is either in the current working direc-
tory or includes the path (full or relative) to the netlist file. Enclose the filename in quotation
marks (” ”) if the path contains spaces. Help is accessible with the -h option.

For MPI runs, [options] may also include command line arguments to mpirun. Consult the
documentation installed with MPI on your platform for more details on MPI options. The
-np <# procs> denotes the number of processors to use for the simulation. NOTE: It is
critical that the number of processors used is less than the number of devices and voltage
nodes in the netlist. The appropriate script used to run Xyce for each supported platform
is listed in the Table 6.2.

53

Xyce TM
Users’ Guide Creating and Running Analysis

Computer
Architecture

OS Serial Executable MPI Executable

Apple PPC OSX

runxyce

Not Available

Compaq DEC OSF

xmpirun
SGI 64 bit IRIX 6.5

Intel X86 Linux

Intel X86 FreeBSD

Intel X86
Microsoft
Windows
2000

runxyce.bat Not Available

Figure 6.2. Platform scripts for running Xyce .

While Xyce is running, the progress of the simulation is output to the command line window.
See the Xyce Reference Guide for complete list and explanation of command line options.

54

6.3 Running a Xyce Simulation Xyce TM
Users’ Guide

Figure 6.1. Example netlist editing using XEmacs.

55

Xyce TM
Users’ Guide Creating and Running Analysis

56

7. DC Analysis

Chapter Overview
This chapter explains how to set up DC analysis and includes the following sections:

� Section 7.1, Overview of DC Sweep

� Section 7.2, Setting Up and Running a DC Sweep

Xyce TM
Users’ Guide DC Analysis

7.1 Overview of DC Sweep
The DC sweep analysis capability in Xyce carries out a sweep, in DC mode, on a circuit.
DC sweep is supported for a source (current or voltage), through a range of specified
values. As the sweep proceeds, the bias point is computed for each value in the specified
range of the sweep.

If the variable to be swept is a voltage or current source, a DC source must be used. The
DC value is set in the netlist (see the Xyce Reference Guide [1]. In simulating the DC
response of an analog circuit, Xyce eliminates any time dependence from the circuit. This
is accomplished by treating all capacitor elements as open circuits, all inductor elements
as short circuits and using only the DC values of both voltage and current sources.

7.2 Setting Up and Running a DC
Sweep

Following the example given in Section 3.3, the diode clipper circuit netlist is shown in
Figure 7.1 with a DC sweep analysis specified. Here, the voltage source Vin is swept from
-10 to 15 in 1 volt increments, resulting in 26 DC operating point calculations. Note also
that the default setting for Vin is ignored during these calculations. All other source values
use the specified values (VCC = 5V in this case).

Running Xyce on this netlist produces an output results file named clipper.cir.prn.
Plotting this data produces the graph shown in Figure 7.2.

7.3 OP Analysis
Xyce also supports .OP analysis statements. In Xyce , .OP should be considered as a
shorthand for a single step DC sweep, in which all the default operating point values are
used. One can also consider .OP analysis to be the operating point calculation which would
occur as the intitial step to a transient calculation, without the subsequent time steps.

This capability was mainly added so that the code would be able to handle legacy netlists
which used this type of analysis statement. In most versions of SPICE, using .OP will result
in extra output which is not available from a DC sweep. That additional output capability
has not yet been implemented in Xyce .

58

7.3 OP Analysis Xyce TM
Users’ Guide

Diode Clipper Circuit
** Voltage Sources
VCC 1 0 5V VIN 3 0 0V
* Analysis Command
.DC VIN -10 15 1
* Output
.PRINT DC V(3) V(2) V(4)
* Diodes
D1 2 1 D1N3940 D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
** GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE
* SUBTYPE: RECTIFIER
.MODEL D1N3940 D(
+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ VJ = .4
+ M = .38
+ EG = 1.36
+ XTI = -8
+ KF = 0
+ AF = 1
+ FC = .9
+ BV = 600
+ IBV = 1E-4)
* .END

Figure 7.1. Diode clipper circuit netlist for DC sweep analysis.

59

Xyce TM
Users’ Guide DC Analysis

Figure 7.2. DC sweep voltages at Vin, node 2 and Vout.

60

8. Transient Analysis

Chapter Overview
This chapter illustrates how to set up a transient analysis and includes the following sec-
tions:

� Section 8.1, Transient Analysis Overview

� Section 8.2, Defining a Time-Dependent Source

� Section 8.3, Transient Calculation Time Steps

� Section 8.4, Checkpointing and Restarting

Xyce TM
Users’ Guide Transient Analysis

8.1 Transient Analysis Overview
The transient response analysis simulates the response of the circuit from TIME=0 to a
specified time. Throughout a transient analysis, any or all of the independent sources may
have time-dependent values.

In Xyce , the transient analysis begins by performing its own bias point calculation at the
beginning of the run, using the same method as used for DC sweep. This is required to set
the initial conditions for the transient solution as the initial values of the sources may differ
from the their DC values.

To run a transient simulation, the circuit netlist file must include a .TRAN command with the
parameters required for the desired transient analysis (see the Xyce Reference Guide [1]).
In addition, the netlist must contain one of the following:

� an independent, transient source (see Table 8.1),

� an initial condition on a reactive element, or

� a time-dependent behavioral modeling source (see Chapter 5.3)

8.2 Defining a Time-Dependent
(transient) Source

Overview of Source Elements

Source elements, either voltage or current, are entered in the netlist file as described in the
Xyce Reference Guide [1]. Table 8.1 list the time-dependent sources available in Xyce for
either voltage or current. For voltage sources, the name is preceeded by the letter V while
current sources are preceeded by the letter I.

To use one of these time-dependent or transient sources, the user must place the source
element line in the netlist and characterize the transient behavior using the appropriate
parameters. Each transient source element has a separate set of parameters dependent
on its transient behavior. In this way, the user can create analog sources which produce
sine wave, square pulse, exponential pulse, single-frequency FM, and piecewise linear
waveforms.

Defining Transient Sources

To define a transient source:

62

8.3 Transient Calculation Time Steps Xyce TM
Users’ Guide

Source Element Name Description

EXP Exponential Waveform

PULSE Pulse Waveform

PWL Piecewise Linear Waveform

SFFM Frequency-modulated Waveform

SIN Sinusoidal Waveform

Table 8.1. Summary of time-dependent sources supported by
Xyce .

� Select one of the supported sources: independent voltage or current source.

� Choose a transient source type from Table 8.1.

� Provide the transient parameters (see the Xyce Reference Guide [1]) to fully define
the source.

Below is an example of an independent sinusoidal voltage source in a circuit netlist. It
creates a voltage source between nodes 1 and 5 that oscillates sinusoidally between -5V
and +5V with a frequency of 50 KHz.

Example: Vexample 1 5 SIN(-5V 5V 50KHz)

8.3 Transient Calculation Time Steps

During the simulation, Xyce uses a calculation time step that is continuously adjusted for
accuracy and efficiency (see [5]). During periods of circuit idleness the calculation time
step is increased, and during dynamic portions of the waveform it is decreased. This
release of Xyce does not allow the user to specify a maximum time step.

The internal calculation time steps used might not be consistent with the output time steps
requested by the user. By default Xyce outputs solution results at every time step it cal-
culates. If the user selects output timesteps via the .OUTPUT statement (see Chapter 11)
then Xyce will output results for the closest time step that follows the time requested by the
user. There is currently no mechanism for forcing Xyce to output at precise user-specified
times.

63

Xyce TM
Users’ Guide Transient Analysis

8.4 Checkpointing and Restarting
The .OPTIONS RESTART command (in the netlist) is used to control all checkpoint output
and restarting. Checkpointing and associated restart can be extremely useful for long
simulations. In essence, Xyce allows the user to save the state of the simulation during a
run (at intervals the user specifies) (checkpointing). This checkpoint data can then be read
in to restart the simulation from any of the saved (checkpointed) time points.

Checkpointing Command Format

� .OPTIONS RESTART PACK=<0|1> JOB=<job name> [INITIAL_INTERVAL=<interval>
[<t0> <i0> [<t1> <i1>...]]]

PACK=<0|1> indicates whether the restart data files will contain byte packed data or
not. JOB=<job name> identifies the prefix for restart files. The actual restart files
will be the job name appended with the current simulation time (e.g. name1e-05 for
JOB=name and simulation time 1e-05 seconds). Furthermore, the
INITIAL INTERVAL=<interval> identifies the initial interval time used for restart out-
put. The <tx ix> intervals identify times (tx) at which the output interval (ix) will
change. This functionality is identical that described for the .OPTIONS OUTPUT com-
mand (see Section 11.1).

� Example - generate checkpoints at every time step (default):

.OPTIONS RESTART JOB=checkpt

� Example - generate checkpoints every 0.1 µs:

.OPTIONS RESTART JOB=checkpt INITIAL_INTERVAL=0.1us

� Example - generate unpacked checkpoints every 0.1 µs:

.OPTIONS RESTART PACK=0 JOB=checkpt INITIAL_INTERVAL=0.1us

� Example - Initial interval of 0.1 µs, at 1 µs in the simulation, change to interval of 0.5
µs, and at 10 µs change to an interval of 0.1 µs:

.OPTIONS RESTART JOB=checkpt INITIAL_INTERVAL=0.1us 1us 0.5us
+ 10us 0.1us

Restarting Command Format

� .OPTIONS RESTART <FILE=<filename> | JOB=<job name> START_TIME=<time>>
+ [INITIAL_INTERVAL=<interval> [<t0> <i0> [<t1> <i1> ...]]]

64

8.4 Checkpointing and Restarting Xyce TM
Users’ Guide

To restart from an existing restart file, the file can be specified by using either the
FILE=<filename> parameter to explicitly request a file or
JOB=<job name> START TIME=<time> to specify a file prefix and a specific time. The time
must exactly match an output file time for the simulator to correctly load the file. To continue
generating restart output files, INITIAL INTERVAL=<interval> and following intervals can
be appended to the command in the same format as described above.

� Example - Restart from checkpoint file at 0.133 µs:

.OPTIONS RESTART JOB=checkpt START_TIME=0.133us

� Example - Restart from checkpoint file at 0.133 µs :

.OPTIONS RESTART FILE=checkpt0.000000133

� Example - Restart from 0.133 µs and continue checkpointing at 0.1 µs intervals:

.OPTIONS RESTART FILE=checkpt0.000000133 JOB=checkpt_again
+ INITIAL_INTERVAL=0.1us

65

Xyce TM
Users’ Guide Transient Analysis

66

9. STEP Parametric
Analysis

Chapter Overview
This chapter illustrates how to set up a step analysis and includes the following sections:

� Section 9.1, STEP Parametric Analysis Overview

� Section 9.2, Stepping over Instance Parameters

� Section 9.3, Stepping over Model Parameters

� Section 9.4, Stepping over Temperature

� Section 9.5, Special Cases: Independent Sources, etc.

Xyce TM
Users’ Guide STEP Parametric Analysis

9.1 STEP Parametric Analysis
Overview

The .STEP command performs a parametric sweep for all the analysies of the circuit. When
this command is invoked, all of the typical analysis, such as .DC or .TRAN analysis are
performed at each parameter step.

This capability is very similar to the STEP capability in PSPICE and ChileSPICE, but not
identical. Efforts will be made in future releases to make the .STEP capability in Xyce
100% compatible with those codes. In Xyce , .STEP can be used to sweep over any device
instance or device model parameter, as well as the circuit temperature. Currently, there is
not a capability for sweeping global parameters, as specified by a .PARAM statement.

9.2 Sweeping over a Device Instance
Parameter

One specifies a .STEP analysis by simply adding a .STEP line to a netlist. .STEP by itself
is not an adequate analysis specification, as it merely specifies an outer loop around the
normal analysis. There needs to be a standard analysis line, such as .TRAN or .DC as well.

A typical .STEP line looks like this:

Example: .STEP M1:L 7u 5u -1u

This has a very similar format to the .DC line. In this example, M1:L is the name of the
parameter, 7u is the initial value of the parameter, 5u is the final value of the parameter,
and -1u is the step size. Currently, Xyce can only handle linear sweeps.

The example uses M1:L as the parameter, but it could have been any model or instance
parameter that existed in the circuit. Internally, Xyce handles the parameters for all device
models and device instances in the same way. You can uniquely identify any parameter
by specifying the device instance name, followed by a colon (:), followed by the specific
parameter name. For example, all the MOSFET models have an instance parameter for
the channel length, L. If you have a MOSFET instance specified in a netlist, named M1,
then the full name for M1’s channel length parameter is M1:L.

A simple application of .STEP to a device instance is given in figure 9.1. This is the same
diode clipper circuit as was used in the transient analysis chapter, except that a single line
(in red font) has been added. The .STEP line will cause Xyce to sweep the resistance of
the resistor, R4, from 3.0 KOhms to 15.0 KOhms, in increments of 2.0 KOhms. This means

68

9.3 Sweeping over a Device Model Parameter Xyce TM
Users’ Guide

that a total of seven transient simulations will be performed, each one with a different value
for R4.

As the circuit is executed multiple times, the file output needs to be a little more sophisti-
cated. The .PRINT statement is still used in much the same way as before. However, there
is a separate *.prn output file for each .STEP increment.

The naming convention for .STEP simulation *.prn files is the same as in the non-.STEP
case, except that the string ”STEP*” is added to the name, where the ”*” is an integer
number indicating the step.

The example file given in figure 9.1 has a filename of clip.cir. The output files generated by
the .PRINT statement are:

clip.cir.STEP0.prn for R4 = 3.0K
clip.cir.STEP1.prn for R4 = 5.0K
clip.cir.STEP2.prn for R4 = 7.0K
clip.cir.STEP3.prn for R4 = 9.0K
clip.cir.STEP4.prn for R4 = 11.0K
clip.cir.STEP5.prn for R4 = 13.0K
clip.cir.STEP6.prn for R4 = 15.0K

These files will be similar in length, but not identical, as changing the resistance changes
the numerical requirements a little bit, resulting in slightly different time step sizes.

9.3 Sweeping over a Device Model
Parameter

Sweeping a model parameter can be done in an indentical manner to an instance param-
eter. Figure 9.2 contains the same circuit as in figure 9.1, but with a new .STEP line added.
The new .STEP line refers to a model parameter, D1N3940:IS. Note that separate .STEP
lines is the correct way to specify multiple parameters for .STEP analysis. Each parameter
needs its own separate line. In this respect, the .STEP line syntax differs from the .DC line
syntax.

9.4 Sweeping over Temperature

It is also possible to sweep over temperature. To do so, simply specify temp as the param-
eter name. It will work in the same manner as .STEP when applied to model and instance
parameters.

69

Xyce TM
Users’ Guide STEP Parametric Analysis

Transient Diode Clipper Circuit with step analysis
* Voltage Sources
VCC 1 0 5V
VIN 3 0 SIN(0V 10V 1kHz)
* Analysis Command
.TRAN 2ns 2ms
* Output
.PRINT TRAN V(3) V(2) V(4)
* Step statement
.STEP R4:R 3.0K 15.0K 2.0K
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE SUBTYPE: RECTIFIER
.MODEL D1N3940 D(
+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ VJ = .4
+ M = .38
+ EG = 1.36
+ XTI = -8
+ KF = 0
+ AF = 1
+ FC = .9
+ BV = 600
+ IBV = 1E-4)
*
.END

Figure 9.1. Diode clipper circuit netlist for step transient analysis.

70

9.4 Sweeping over Temperature Xyce TM
Users’ Guide

Transient Diode Clipper Circuit with step analysis
* Voltage Sources
VCC 1 0 5V
VIN 3 0 SIN(0V 10V 1kHz)
* Analysis Command
.TRAN 2ns 2ms
* Output
.PRINT TRAN V(3) V(2) V(4)
* Step statements
.STEP R4:R 3.0K 15.0K 2.0K
.STEP D1N3940:IS 2.0e-10 6.0e-10 2.0e-10
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE SUBTYPE: RECTIFIER
.MODEL D1N3940 D(
+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ VJ = .4
+ M = .38
+ EG = 1.36
+ XTI = -8
+ KF = 0
+ AF = 1
+ FC = .9
+ BV = 600
+ IBV = 1E-4)
*
.END

Figure 9.2. Diode clipper circuit netlist for 2-step transient analy-
sis.

71

Xyce TM
Users’ Guide STEP Parametric Analysis

9.5 Special cases: Sweeping
Independent Sources, Resistors,
Capacitors

For some devices, there is generally only one parameter that one would want to actually
sweep. For example, a linear resistor’s only parameter of interest is the resistance, R. Sim-
ilarly, for a DC voltage or current source, one is usually only interested in the magnitude of
the source. Finally, linear capacitors generally only have the capacitance, C, as a parame-
ter of interest. To make things easier for the user, these three types of devices have default
parameters. Examples of usage are given below.

Example:
.STEP R4 3.0K 15.0K 2.0K
.STEP VCC 4.0 6.0 1.0
.STEP ICC 4.0 6.0 1.0
.STEP C1 0.45u 0.50u 0.1u

Independent sources require some extra explanation. There are number of different types
of independent source, and only some of them have default parameters. Sources which
are subject to .DC sweeps (swept sources) do not have a default parameter, as this could
easily lead to infinite loops. The various independent source defaults are defined in the
table.

Source Type Default

Sinusoidal source V0 (DC value, Offset)

Exponential source V1 (DC value, Initial value)

Pulsed source V2 (Pulsed value)

Constant, or DC source V0 (Constant value)

Piecewise Linear source No default

SFFM source No default

Swept source (specified on a .DC line) No default

Table 9.1: Default parameters for independent sources.

72

10. Using Homotopy
Algorithms to Obtain
Operating Points

Chapter Overview
This chapter includes the following sections:

� Section 10.1, Homotopy Algorithms Overview

� Section 10.2, Examples

Xyce TM
Users’ Guide Using Homotopy Algorithms to Obtain Operating Points

10.1 Homotopy Algorithms Overview
The most difficult type of numerical nonlinear circuit problem to solve is a DC operating
point. Unlike transient analysis, DC operating point analysis cannot rely on the results of
a previous time step. Also, operating points often have multiple solutions, both valid and
invalid.

Homotopy methods can often provide solutions to difficult nonlinear problems when other,
more conventional numerical methods fail. In recent years, these techniques have been
applied to circuit analysis. As of the Xyce Version 2.0 release, some of these algorithms
have been added to Xyce . This chapter gives an introduction to the usage of homotopy
algorithms (also called continuation algorithms) in Xyce . For a more complete description
of solver options, see the Xyce Reference Guide [1].

HOMOTOPY Algorithms Available in Xyce

There are two general types of homotopy which are available in Xyce . The first (which is
set with .options nonlin continuation=1), is a simple natural parameter homotopy, in
which the homotopy parameter is an already-defined input parameter to a device model
or instance. This algorithm can be useful, but often is not. The most obvious natural
parameters to use (the magnitudes of independent sources) tend to lead to turning points
in the continuation.

The second is an algorithm which is designed especially for MOSFET circuits [6]. This
algorithm involves two internal MOSFET model parameters, one for the MOSFET gain,
and the other for the nonlinearity of the current-voltage relationship. This algorithm is
invoked with .options nonlin continuation=2. This algorithm has proved to be very
effective in large MOSFET circuits.

10.2 Examples

MOSFET Homotopy

Figure 10.1 contains a MOSFET homotopy example netlist. Note that this is a usage
example - the circuit itself does not require homotopy to run. Circuits which are complex
enough to require homotopy would not fit on a single page. The lines pertainent to the
homotopy algorithm are highlighed in red.

Explanation of Parameters, Best Practice

Note that this example shows one set of options, but there are a number of other combi-
nations of options that will work.

74

10.2 Examples Xyce TM
Users’ Guide

THIS CIRCUIT IS A MOS LEVEL 1 MODEL CMOS INVERTER
.TRAN 20ns 30us 0 5ns
.PRINT tran v(vout) v(in) v(1)
.options timeint reltol=5e-3 abstol=1e-3
.options linsol ksparse=1

* HOMOTOPY Options
.options device voltlim=0

.options nonlin continuation=2

.options loca stepper=0 predictor=0 stepcontrol=1
+ initialvalue=0.0 minvalue=-1.0 maxvalue=1.0
+ initialstepsize=0.2 minstepsize=1.0e-4
+ maxstepsize=5.0 aggressiveness=1.0
+ maxsteps=100 maxnliters=200

VDDdev VDD 0 5V
RIN IN 1 1K
VIN1 1 0 5V PULSE (5V 0V 1.5us 5ns 5ns 1.5us 3us)
R1 VOUT 0 10K
C2 VOUT 0 0.1p
MN1 VOUT IN 0 0 CD4012_NMOS L=5u W=175u
MP1 VOUT IN VDD VDD CD4012_PMOS L=5u W=270u
.MODEL cd4012_pmos PMOS
.MODEL cd4012_nmos NMOS
.END

Figure 10.1. Example MOSFET homotopy netlist.

75

Xyce TM
Users’ Guide Using Homotopy Algorithms to Obtain Operating Points

There are a number of ”best practice” rules, which are illustrated by the example in fig-
ure 10.1. They are:

� voltlim=0. This is generally required - the homotopy algorithms will usually break if
this is not set.

� continuation=2. This specifies that we are using the special MOSFET homotopy.
This is a 2-pass homotopy, in which first a parameter having to do with the gain is
swept from 0 to 1, and then a parameter relating to the nonlinearity of the transfer
curve is swept from 0 to 1.

� initialvalue=0.0. This is required.

� maxvalue=1.0. This is required.

� stepcontrol=1. This specifies that the homotopy steps are adaptive, rather than
constant. This is recommended.

� maxsteps=100. This sets the maximum number of continuation steps for each param-
eter. For the special MOSFET continuation (which has 2 parameters), this means a
maximum of 200 steps.

� maxnliters=200. This is the maximum number of nonlinear iterations, and has
precedence over the similar number which can be set on the .options nonlin line.

� aggressiveness=1.0. This refers to the step size control algorithm, and the value
of this parameter can be anything from 0.0 to 1.0. 1.0 is the most aggressive. In
practice, try starting with this set to 1.0. If the solver fails, then reset to a smaller
number.

Natural Parameter Homotopy

Figure 10.2 contains a natural parameter homotopy netlist. It is the same circuit as was
used in figure 10.1, except that some of the parameters are different. As before, the lines
pertainent to the homotopy algorithm are highlighed in red.

Explanation of Parameters, Best Practice

There are a few differences between the netlist in figure 10.1 and figure 10.2. They are:

� continuation=1. Sets the algorithm to use natural parameter homotopy.

� conparam=VDDdev. If using natural parameter homotopy, this is required. It sets
which input parameter to use. The parameter name is subject to the same rules as
parameter used by the .STEP capability. (See section 9.2). In this case the parameter
is the magnitude of the DC voltage source, VDDdev. For this type of voltage source,
it was possible to use the default device parameter (see section 9.5)

76

10.2 Examples Xyce TM
Users’ Guide

THIS CIRCUIT IS A MOS LEVEL 1 MODEL CMOS INVERTER
.TRAN 20ns 30us 0 5ns
.PRINT tran v(vout) v(in) v(1)
.options timeint reltol=5e-3 abstol=1e-3
.options linsol ksparse=1

* HOMOTOPY Options
.options device voltlim=0

.options nonlin continuation=1

.options loca stepper=0 predictor=0 stepcontrol=1
+ conparam=VDDdev
+ initialvalue=0.0 minvalue=-1.0 maxvalue=5.0
+ initialstepsize=0.2 minstepsize=1.0e-4
+ maxstepsize=5.0 aggressiveness=1.0
+ maxsteps=100 maxnliters=200

VDDdev VDD 0 5V
RIN IN 1 1K
VIN1 1 0 5V PULSE (5V 0V 1.5us 5ns 5ns 1.5us 3us)
R1 VOUT 0 10K
C2 VOUT 0 0.1p
MN1 VOUT IN 0 0 CD4012_NMOS L=5u W=175u
MP1 VOUT IN VDD VDD CD4012_PMOS L=5u W=270u
.MODEL cd4012_pmos PMOS
.MODEL cd4012_nmos NMOS
.END

Figure 10.2. Example natural parameter homotopy netlist.

77

Xyce TM
Users’ Guide Using Homotopy Algorithms to Obtain Operating Points

Using the magnitudes of independent voltage and current sources is a fairly obvious ap-
proach. Unfortunately, it doesn’t seem to work very well in practice.

78

11. Results Output and
Evaluation Options

Chapter Overview
This chapter illustrates how to output simulation results to data or output files.

� Section 11.1, Control of Results Output

� Section 11.2, Additional Output Options

� Section 11.3, Evaluating Solution Results

Xyce TM
Users’ Guide Results Output and Evaluation Options

11.1 Control of Results Output
Xyce supports only one solution output command, .PRINT. .PRINT is quite flexible, and
supports several output formats.

.PRINT Command

The .PRINT command sends the analysis results to an output file. Xyce supports several
options on the .PRINT line of netlists that control the format of the output. The syntax for
the command is as follows:

� .PRINT <analysis type> [options] <output variable(s)>

Example: .PRINT TRAN FILE=Output.prn V(3) V(2) V(4)

Table 11.1 gives the various options currently available to the .PRINT command. For further
information, see the Xyce Reference Guide [1].

11.2 Additional Output Options

.OPTIONS OUTPUT Command

The main purpose of the .OPTIONS OUTPUT command is to provide control of the frequency
at which data is written to files specified by .PRINT TRAN commands. This can be espe-
cially useful in controlling the size of the results file for simulations which required a large
number of time steps. An additional benefit is that reducing the output frequency from the
default, which outputs results at every time-step, can improve performance. The format for
controlling the output frequency is:

� .OPTIONS OUTPUT INITIAL INTERVAL=<interval> [<t0> <i0> [<t1> <i1> ...]]

where INITIAL_INTERVAL=<interval> specifies the starting interval time for output and
<tx ix> specifies later simulation times (tx) where the output interval will change to (ix).

The following example shows the output being requested (via the netlist .OPTIONS OUTPUT
command) every .1µs for the first 10µs, every 1µs for the next 10µs, and every 5µs for the
remainder of the simulation:

Example: .OPTIONS OUTPUT INITIAL INTERVAL=.1us 10us 1us 20us 5us

80

11.2 Additional Output Options Xyce TM
Users’ Guide

Option. . . Action. . .

FORMAT=<STD|NOINDEX|PROBE>

Controls the output format. The STD
format outputs data in standard columns.
The NOINDEX format is the same as the
standard format except that the index
column is omitted. The PROBE format
specifies that the output should be
formatted to be compatible with the
PSpice Probe plotting utility. The default is
STD.

FILE=<output filename>

Allows the user to specify the output
filename. The default is the netlist
filename with the characters “.prn”
appended (e.g., foo.cir.prn where
foo.cir was the input netlist filename.

WIDTH=<print field width>
Allows the user to control the column
width for the output data.

PRECISION=<floating point precision>
Controls the number of significant digits
past the decimal point.

FILTER=<filter floor value>
Specifies the absolute value below which
output variables will be printed as 0.0.

DELIMITER=<TAB|COMMA>
Specifies an alternate delimiter between
columns of output in the STD output
format.

Table 11.1. .PRINT command options.

81

Xyce TM
Users’ Guide Results Output and Evaluation Options

Note: Xyce will output data at the next time that is greater-than or equal to the current
interval time. This means that output might not correspond exactly to the time intervals
due to the adaptive time stepping algorithm.

11.3 Evaluating Solution Results
This section describes how to view graphical waveform analysis of the simulation results
generated by Xyce . You can use the solution output features of Xyce in conjunction with
graphing tools (e.g., TecPlot, gnuplot, MS Excel, etc.) to analyze graphically the waveform
data created by a Xyce circuit simulation (see Figure 11.1 below for an example plot using
TecPlot, http://www.amtec.com). In addition, Xyce is able to output .csd files which can
be read by the PSpice Probe utility to view the results. See the PSpice Users Guide [2] for
instructions on using the Probe tool.

Figure 11.1. TecPlot plot of diode clipper circuit transient re-
sponse from Xyce .prn file.

Xyce produces two types of output: the simulation output file and the waveform data file.
The calculations and results reported in the simulation output file can be thought of as an
audit trail of the simulation. However, graphical analysis of data in the waveform data file
is the most useful and accommodating way to evaluate simulation results.

82

12. Running in Parallel

Chapter Overview
This chapter gives instructions on how to run a parallel version of Xyce built with support
for the Message Passing Interface (MPI) version of Xyce on a supported parallel computer.
It includes the following sections:

� Section 12.1, Simple Parallel Execution Example

� Section 12.2, Running Xyce in Parallel

� Section 12.3, Partitioning Options

Xyce TM
Users’ Guide Running in Parallel

12.1 Simple Parallel Execution
Example

This section demonstrates a simple example of running Xyce in parallel environments
using an existing netlist. Currently, the user must login locally to the parallel platform and
use the command line to start the job.

This example assumes a standard MPI implementation and uses the most common set of
associated commands.

1. Make sure a parallel-capable executable (xmpirun) for Xyce is available. The instal-
lation procedure described in Section 1.2 will create this script.

2. Execute Xyce using the following command:

xmpirun -np <# procs> [options] <netlist_file>

[options] are the command line arguments for Xyce and mpirun. See the Xyce Reference
Guide for details.

For running on most platforms, the procedure outlined above will be sufficient, although,
to improve efficiency, the user may use graph partitioning methods, which is the subject of
Section 12.3. It is critical that the number of processors used is less than the number of
devices and voltage nodes in the netlist.

12.2 Running Xyce in Parallel
A parallel version of Xyce is available for several different platforms as shown in Table 6.2.
Running Xyce in parallel requires that the correct version of mpirun is used. Use the script
xmpirun to call the correct version with the appropriate parameters. For example, to run
Xyce on two processors with an example netlist, type:

xmpirun -np 2 anExampleNetlist.cir

In general the number of processors is specified by using the -np argument to the appro-
priate mpirun command. Some specific considerations are given below.

Running Xyce under MPICH

The MPICH implementation of MPI requires that there exist a file of machines on which to
run. On RedHat Linux this is installed in /usr/lib/mpich/share. On FreeBSD this is installed

84

12.3 Partitioning Options Xyce TM
Users’ Guide

in /usr/local/mpich/share. This file must contain one line for each machine on which a pro-
cess may be started. If you do not have write access to the directory in which the default
machines file is stored you may specify an alternate file with the -machinefile <machinefilename>
option to mpirun.

MPICH executes parallel jobs by using the remote shell (rsh) or secure shell (ssh) to the
target machine. You may, therefore, be prompted for a password when starting up a multi-
ple processor job.

Running Xyce under LAM MPI

Unlike MPICH, LAM MPI requires a daemon process to be running on each machine that
will service parallel jobs. This daemon is started by using the lamboot program. By default,
lamboot will run a daemon on the local machine, but it may be given a file name containing
a list of machines for multiple-machine jobs. Consult the bhost man page for the format of
the file.

lamboot runs a program called lamd which will remain running until it is halted. As long
as lamd is running you may continue to run parallel jobs. Halt lamd using the lamhalt
command.

12.3 Partitioning Options
Xyce currently has two graph partitioning options available. These partitioning utilities
subdivide the circuit problem into sections that are then distributed to the nodes 1 (proces-
sors) on a parallel computer. A good partition can have a dramatic effect on the parallel
performance of circuit simulation run. Basically, there are two key components to a good
partition: 1) achieving an effective load balance and 2) minimizing communication over-
head. An effective load balance ensures that the computational load of the calculation is
equally distributed among the available processors. Minimizing communication overhead
seeks to distribute the problem in a way that reduces the impact of underlying message
passing during the simulation run. Xyce has integrated within it two partitioning libraries -
the Chaco static partitioner and the ZOLTAN library of parallel partitioning heuristics.

Chaco Static Partitioning of Circuit

Chaco is accessible using the ’.OPTIONS PARALLEL PARTITIONER=0’ line in the netlist. By
adding this line to the netlist, Chaco will be used to partition the initial circuit before it is dis-

1The term “node” is used here in the parallel computing context to refer to a unit of a parallel computer. This
is a more general term the that of “processor”; in many distributed memory computers, two or more processors
share a memory unit and are collectively referred to as a “node”. Note also that the context should prevent
confusion with “circuit nodes”.

85

Xyce TM
Users’ Guide Running in Parallel

tributed to processors. Chaco partitioning can be controlled through a ’Chaco_User_Params’
file that must be in the execution directory. See the Chaco User Guide [7] for details.

Currently, one parameter is available for Chaco partitioning: using ’DISTRIBINDSRCNODES=0’
as a parallel option can be very effective for an improved partitioning, especially for large
digital circuits. However, limitations are placed on RESTART and OUTPUT due to the re-
naming and distribution of some independent sources and their associated voltage nodes.
Restarting can only be used for an identical number of processors and partitioning. Cur-
rent cannot be output for the distributed voltage sources and voltage cannot be output for
the distributed voltage nodes.

Zoltan Partitioning of Linear System

Zoltan is accessible through the ’.OPTIONS LINSOL’ control line in the netlist. By adding
an options ’TR_LOADBALANCE=1’ to the linear options, the linear system is statically load
balanced based on the graph of the Jacobian matrix. The local system is also reordered
based on nested dissection which should improve conditioning and minimize fill. These
techniques can be very effective for improving the efficiency of the iterative linear solvers.

Recommended Partitioning and Solver Options

A recommended set of options for parallel problems includes singleton filtering as well as
Chaco and Zoltan partitioning of the circuit and linear system respectively. The additional
settings can improve the performance of the preconditioned linear solver.

� .OPTIONS PARALLEL PARTITIONER=0 DISTRIBINDSRCNODES=0

� .OPTIONS LINSOL TR LOADBALANCE=1 TR SINGLETON FILTER=1 TR SOLVERMAP=1 TR REINDEX=1
USE IFPACK PRECOND=1

86

Bibliography

[1] Scott A. Hutchinson, Eric R. Keiter, Robert J. Hoekstra, Lon J. Waters, Thomas V.
Russo, Eric L. Rankin, Roger P. Pawlowski, and Steven D. Wix. Xyce parallel electronic
simulator: Reference guide, version 2.0. Technical Report SAND2003-xxxx, Sandia
National Laboratories, Albuquerque, NM, December 2003.

[2] Orcad PSpice User’s Guide. Technical report, Orcad, Inc., 1998.

[3] M. S. Eldred, A. A. Giunta, B. G. van Bloemen Waanders, S. F. Wojtkiewicz Jr., W. E.
Hart, and M. P. Alleva. DAKOTA, A multilevel parallel object-oriented framework for
design optimization, parameter estimation, uncertainty quantification, and sensitivity
analysis. Version 3.0 Reference Manual. Technical Report SAND2001-3796, Sandia
National Laboratories, Albuquerque, NM, April 2002.

[4] A. S. Grove. Physics and Technology of Semiconductor Devices. John Wiley and Sons,
Inc., 1967.

[5] H. A. Watts, E. R. Keiter, S. A. Hutchinson, and R. J. Hoekstra. Time integration for the
Xyce parallel electronic simulator. In ISCAS 01, October 2000.

[6] J. Roychowdhury. Private Communication, 2003.

[7] Bruce Hendrickson and Robert Leland. The Chaco User’s Guide: Version 2.0. Techni-
cal Report SAND94–2692, Sandia National Laboratories, Albuquerque, NM, December
1994.

Xyce TM
Users’ Guide BIBLIOGRAPHY

88

Index

Xyce
parallel executable, 84
running, 53
running in parallel, 83

OUTPUT, 64
.PRINT, 80, 81
RESTART, 64, 86

AC analysis, 52
algorithm

time integration, 52
analysis

AC, 52
creating and running, 51
creation, 52
DC, 23, 52, 57
DC sweep, 29
DC sweep, 52
DC sweep, 58
STEP, 67, 68
transient, 23, 24, 30, 52, 61, 62

behavioral model, 4, 39
analog behavioral modeling (ABM), 49
analog behavioral modeling (ABM), 50
analog behavioral modeling (ABM), 49

bias point, 58, 62
Bifurcation, 73

Chaco, 85
checkpoint, 64

format, 64
ChileSPICE, 18
circuit

elements, 36
simulation, 36
topology, 36, 37

command line, 29, 53
output, 54
parallel computing, 84

Continuation, 73

DAKOTA, 23, 24
DC analysis, 52, 57
DC Operating Point, 24
DC Operating Point, 23
DC Sweep, 58
DC sweep, 29, 52

OP Analysis, 58
running, 58

device
B (nonlinear dependent) source, 50
analog, 38, 39
analog device summary, 40
B source, 39
behavioral, 50
behavioral model, 16, 22, 39
bipolar junction transistor (BJT, 39
capacitor, 39
device types, 39
diode, 39
independent current source, 39
independent voltage source, 39
inductor, 39
instance, 39
MOSFET, 40
mutual inductor, 39
nonlinear dependent source, 39
package, 22
PDE, 22
PDE Devices, 40
resistor, 39
specifying ABM devices, 50

89

Xyce TM
Users’ Guide INDEX

subcircuit, 40
transmission line, 40
voltage controlled current source, 39
voltage controlled switch, 40
voltage controlled voltage source, 39

Example
checkpointing, 64
circuit construction, 26
DC sweep, 29
declaring parameters, 41
restarting, 65
subcircuit model definition, 47, 48
transient analysis, 32
using expressions, 42
using parameters, 41

graph partitioning, 84, 85
ground nodes, 37
GUI, 29, 53

Homotopy, 73, 74

initial conditions, 52

Microsoft Windows, 53
model

definition, 46
model organization, 48

MPI, 29, 53, 84

netlist, 26, 36
.END, 36
.END statement, 27
analog devices, 38
arithmetic expressions, 44
command elements, 38
comments, 27, 37
device description, 38
element, 36
end line, 37
expression operators, 43
expressions, 41
model definition, 38
node names, 37
parameters, 40
restart, 64

scaling factors, 36
sources, 62
subcircuit, 38
title, 27
title line, 36, 37
using expressions, 42

node names, 37

Object-oriented, 16
OP analysis, 58
Operating Point, 23, 24
output

time values, 63

parallel
communication, 85
computing, 15, 16, 21, 22
distributed-memory, 16, 22
efficiency, 16, 22, 84
graph partitioning, 84, 85
large scale, 22
load balance, 85
message passing, 16, 22
MPI, 29, 53, 84
number of processors, 53
shared-memory, 16, 22

PDE Devices, 40
platforms

Apple/OSX, 54
Compaq/OSF, 54
Intel X86/FreeBSD, 54
Intel X86/Linux, 54
Intel X86/Microsoft Windows 2000, 54
SGI/IRIX, 54

PSpice, 18, 26, 50
Probe, 82

restart, 64, 65, 86
format, 64

results
evaluating, 82
output control, 80
output frequency, 80
output options, 79
print commands, 81

running Xyce , 53

90

INDEX Xyce TM
Users’ Guide

runxyce, 29, 53

Sandia National Laboratories, 15
schematic capture, 26
simulation

analog, 22, 23
device, 23
digital, 22, 23
mixed signal, 22, 23

solvers
iterative linear, 86
transient, 63

sources, 62
defining time-dependent, 62
time-dependent, 63
waveforms, 62

SPICE, 26, 36
STEP parametric analysis, 67, 68
subcircuit

hierarchy, 47
scope, 47

time step, 52
maximum size, 63
size, 63

topology, 37
transient analysis, 30, 52, 61, 62

Unix, 18

Windows, 53

xmpirun, 29, 53

ZOLTAN, 85, 86

91

Xyce TM
Users’ Guide INDEX

DISTRIBUTION:

1 Steven P. Castillo
Klipsch School of Electrical and
Computer Engineering
New Mexico State University
Box 3-o
Las Cruces, NM 88003

1 Kwong T. Ng
Klipsch School of Electrical and
Computer Engineering
New Mexico State University
Box 3-o
Las Cruces, NM 88003

1 Nick Hitchon
Electrical and Computer Engi-
neering
University of Wisconsin
1415 Engineering Drive
Madison, WI 53706

1 Mark Kushner
Department of Electrical and
Computer Engineering
University of Illinois
1406 W. Green Street
Urbana, IL 61801

1 Andrew J. Christlieb
Department of Mathematics
University of Michigan
2470 East Hall
Ann Arbor, MI 48109

1 Ron Kielkowski
RCG Research, Inc
8605 Allisonville Rd, Suite 370
Indianapolis, In 46250

1 Mike Davis
Software Federation, Inc.
211 Highview Drive
Boulder, Co 80304

1 Wendland Beezhold
Idaho Accelerator Center
1500 Alvin Ricken Drive
Pocatello, Idaho 83201

1 Kartikeya Mayaram
Department of Electrical and
Computer Engineering
Oregon State University
Corvallis, OR 97331-3211

1 Linda Petzold
Department of Computer Sci-
ence
University of California, Santa
Barbara
Santa Barbara, CA 93106-5070

1 Jaijeet Roychowdhury
4-174 EE/CSci Building
200 Union Street S.E.
University of Minnesota
Minneapolis, MN 55455

1 C.-J. Richard Shi
VLSI and Electronic Design Au-
tomation
210 EE/CSE Bldg.
Box 352500
University of Washington
Seattle, WA 98195

1 Homer F. Walker
WPI Mathematical Sciences
100 Institute Road
Worcester, MA 01609

1 Dan Yergeau
CISX 334
Via Ortega
Stanford, CA 94305-4075

1 Masha Sosonkina
319 Heller Hall
10 University Dr.
Duluth, MN 55812

1 Misha Elena Kilmer
113 Bromfield-Pearson Bldg.
Tufts University
Medford, MA 02155

92

INDEX Xyce TM
Users’ Guide

1 Tim Davis
P.O. Box 116120
University of Florida
Gainesville, FL 32611-6120

1 Achim Basermann
C&C Research Laboratories,
NEC Europe Ltd.
Rathausallee 10
D-53757 Sankt Augustin
Germany

1 Philip A. Wilsey
Experimental Computing Labo-
ratory
Department of Electrical &
Computer Engineering and
Computer Science
College of Engineering
P.O. Box 210030
University of Cincinnati
Cincinnati, Ohio 45221-0030

1 Dale E. Martin
Clifton Labs
3678 Fawnrun Dr.
Cincinnati, OH 45241

1 MS 0151
Tom Hunter, 09000

1 MS 0513
Al Romig, 01000

1 MS 0457
John Stichman, 02000

1 MS 0321
Bill Camp, 09200

1 MS 0841
Thomas C. Bickel, 09100

1 MS 1079
Marion Scott, 01700

1 MS 9003
Kenneth E. Washington,
08900

1 MS 0318
Paul Yarrington, 09230

1 MS 1071
Mike Knoll, 01730

1 MS 0310
Robert Leland, 09220

1 MS 0316
Sudip Dosanjh, 09233

1 MS 0525
Paul V. Plunkett, 01734

1 MS 0835
J. Michael McGlaun, 09140

1 MS 0835
Steven N. Kempka, 09141

1 MS 0826
John D. Zepper, 09143

1 MS 0824
Jaime L. Moya, 09130

1 MS 0828
Martin Pilch, 09133

1 MS 0139
Stephen E. Lott, 09905

1 MS 0310
Mark D. Rintoul, 09212

1 MS 1110
David Womble, 09214

1 MS 1111
Bruce Hendrickson, 09215

1 MS 1110
Neil Pundit, 09223

1 MS 1110
Doug Doerfler, 09224

1 MS 0822
Philip Heermann, 09227

93

Xyce TM
Users’ Guide INDEX

1 MS 0819
Edward Boucheron, 09231

1 MS 0820
Patrick Chavez, 09232

1 MS 0316
John Aidun, 09235

10 MS 0316
Scott A. Hutchinson, 09233

1 MS 0316
Eric R. Keiter, 09233

1 MS 0316
Robert J. Hoekstra, 09233

1 MS 0316
Joseph P. Castro, 09233

1 MS 0316
David R. Gardner, 09233

1 MS 0316
Gary Hennigan, 09233

1 MS 0316
Roger Pawlowski, 09233

1 MS 0316
Richard Schiek, 09233

1 MS 1111
John N. Shadid, 09233

1 MS 1111
Andrew Salinger, 09233

1 MS 0847
Scott Mitchell, 09211

1 MS 0847
Mike Eldred, 09211

1 MS 0847
Tim Trucano, 09211

1 MS 0847
Bart van Bloemen Waanders,
09211

1 MS 0196
Elebeoba May, 09212

1 MS 1110
Todd Coffey, 09214

1 MS 1110
David Day, 09214

1 MS 1110
Mike Heroux, 09214

1 MS 1110
James Willenbring, 09214

1 MS 1111
Karen Devine, 09215

1 MS 0310
Jim Ang, 09220

1 MS 1109
Robert Benner, 09224

1 MS 0822
Pat Crossno, 09227

1 MS 0822
David Rogers, 09227

1 MS 0316
Harry Hjalmarson, 09235

1 MS 0525
Steven D. Wix, 01734

1 MS 0525
Thomas V. Russo, 01734

1 MS 0525
Lon Waters, 01734

1 MS 0525
Regina Schells, 01734

1 MS 0525
Carolyn Bogdan, 01734

1 MS 0525
Mike Deveney, 01734

94

INDEX Xyce TM
Users’ Guide

1 MS 0525
Raymond B. Heath, 01734

1 MS 0525
Ronald Sikorksi, 01734

1 MS 0525
Albert Nunez, 01734

1 MS 1081
Paul E. Dodd, 01762

1 MS 0660
Roger F. Billau, 09519

1 MS 0874
Robert Brocato, 01751

1 MS 1081
Charles E. Hembree, 01739

1 MS 0311
Greg Lyons, 02616

1 MS 0311
Martin Stevenson, 02616

1 MS 0328
Fred Anderson, 02612

1 MS 0537
Perry Molley, 02331

1 MS 0537
Siviengxay Limary, 02331

1 MS 0537
John Dye, 02331

1 MS 0537
Barbara Wampler, 02331

1 MS 0537
Doug Weiss, 02333

1 MS 0537
Scott Holswade, 02333

1 MS 0481
Joel Brown, 02132

1 MS 0405
Todd R. Jones, 12333

1 MS 0405
Thomas D. Brown, 12333

1 MS 0405
Donald C. Evans, 12333

1 MS 9101
Rex Eastin, 08232

1 MS 9101
Seung Choi, 08235

1 MS 9409
William P. Ballard, 08730

1 MS 9202
Kathryn R. Hughes, 08205

1 MS 9202
Rene L. Bierbaum, 08205

1 MS 9202
Kenneth D. Marx, 08205

1 MS 9202
Stephen L. Brandon, 08205

1 MS 9217
Stephen W. Thomas, 08950

1 MS 9217
Tamara G. Kolda, 08950

1 MS 9217
Kevin R. Long, 08950

1 MS 1179
Leonard Lorence, 15341

1 MS 1179
David E. Beutler, 15341

1 MS 1179
Brian Franke, 15341

1 MS 0835
Randy Lorber, 09141

95

Xyce TM
Users’ Guide INDEX

1 MS 1152
Mark L. Kiefer, 01642

1 MS 9018
Central Technical Files,
8945-1

2 MS 0899
Technical Library, 9616

1 MS 0612
Review & Approval Desk, for
DOE/OSTI, 9612

96

	Table of Contents
	List of Figures
	List of Tables
	Preliminaries
	Xyce Overview
	Installation
	Quick Reference for Users of Other Circuit Codes
	How to Use this Guide

	Distinctive Features of Xyce
	Xyce Capabilities
	Support for large-scale parallel computing
	Analysis Support within Xyce

	Simulation Examples with Xyce
	Example Circuit Construction
	Running Xyce
	Command Line Operation

	DC Sweep Analysis
	Transient Analysis

	Simulation Design Creation
	Netlist Circuit Description
	Netlist Overview
	Netlist Elements

	Devices Available for Simulation
	Analog Devices

	Parameters and Expressions
	Parameters
	How to Declare and Use Parameters
	Expressions

	Working with Models
	Definition of a Model
	Defining models using model parameters
	Defining models using subcircuit netlists

	Model Organization
	Model libraries
	Model library configuration

	Analog Behavioral Modeling
	Overview of Analog Behavioral Modeling
	Specifying ABM Devices

	Creating and Running Analysis
	Types of Analysis
	Analysis Creation
	Running a Xyce Simulation
	Command Line Simulation

	DC Analysis
	Overview of DC Sweep
	Setting Up and Running a DC Sweep
	OP Analysis

	Transient Analysis
	Transient Analysis Overview
	Defining a Time-Dependent (transient) Source
	Overview of Source Elements
	Defining Transient Sources

	Transient Calculation Time Steps
	Checkpointing and Restarting
	Checkpointing Command Format
	Restarting Command Format

	STEP Parametric Analysis
	STEP Parametric Analysis Overview
	Sweeping over a Device Instance Parameter
	Sweeping over a Device Model Parameter
	Sweeping over Temperature
	Special cases: Sweeping Independent Sources, Resistors, Capacitors

	Using Homotopy Algorithms to Obtain Operating Points
	Homotopy Algorithms Overview
	HOMOTOPY Algorithms Available in Xyce

	Examples
	MOSFET Homotopy
	Natural Parameter Homotopy

	Results Output and Evaluation Options
	Control of Results Output
	.PRINT Command

	Additional Output Options
	.OPTIONS OUTPUT Command

	Evaluating Solution Results

	Running in Parallel
	Simple Parallel Execution Example
	Running Xyce in Parallel
	Running Xyce under MPICH
	Running Xyce under LAM MPI

	Partitioning Options
	Chaco Static Partitioning of Circuit
	Zoltan Partitioning of Linear System
	Recommended Partitioning and Solver Options

	Bibliography
	Index

